Skip to main content

Overview of Graphene Water Dispersion

Graphene is a two-dimensional network carbon nanomaterial. All carbon atoms inside the graphene form a unique two-dimensional hexagonal honeycomb lattice structure by sp2 hybridization. This monatomic layer structure makes graphene the thinnest and strongest material in the world. Graphene also has excellent physical and chemical properties, such as mechanical properties, thermal properties, electrical properties, and optical properties. That is why, graphene has prospects for practical application and a wider value. The graphene is also compared with other members of the carbon nanomaterials family, namely one-dimensional carbon nanotubes and zero-dimensional fullerenes.
Recently, graphene is often combined with ceramic, polymer and metal materials to prepare graphene-reinforced composites. And this situation is not only making the composite materials’ physical and chemical properties greatly improved, but also expanding the application of graphene in the field of biosensors, optoelectronic materials, and catalysts. In some applications graphene water dispersion is needed to use and gives better properties to the materials.

Graphene Products

Dispersions of graphene are beneficial for the use of graphene in various industrial applications, such as: use as component or additive of elastomeric compositions for tires. If graphene level is 1–1.5% in the dispersion many superior properties can be achieved like an improved gas barrier effect, with consequent increase of impermeability, causing the tire to deflate more slowly; improvement of the mechanical dynamic properties, in particular rolling resistance; increase of thermal conductivity, useful for heat dissipation; increase of electrical conductivity, useful for the dissipation of electrostatic energy.
If graphene water dispersions are used as additive or component of silicon and paints compositions, increase of electrical conductivity, increase of thermal conductivity for heat dissipation can be obtained to reach conductive compounds; to give anticorrosion and antifouling properties, gas and liquid barrier effect with consequent increase of impermeability.
In textiles if graphene levels reach 40% in water dispersion good electrical conductivity for producing intelligent textiles, good thermal conductivity, liquid barrier effect, flame retardant properties and IR shielding can be obtained.

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...