Skip to main content

Rutile Titanium Dioxide Nanoparticles: Description, Usage, and Applications

Titanium dioxide is also called titania which occurs oxide of titanium in nature, and its resources are ilmenite, rutile, and anatase. It is a large-band gap semi-conductor. In 2014, world production exceeded nine million metric tons, and it has been valued at $13.2 billion. Since it has unique optical and chemical properties, titanium dioxide nanoparticles have been studied and numerous applications are found. They are also called ultrafine titanium dioxide. Small size add a significant property to nanoparticles of titanium oxide which makes it photocatalytic material. High chemical stability, and strong oxidizing power are also properties of titanium dioxide nanoparticles among others.
Figure: In the rutile titanium dioxide crystalline structure, titanium and oxygen atoms are shown as grey and red spheres respectively. 
                               
                            G. Narejo, and W. F. Perger, First Principles Computations of Second-Order Elastic Constants (SOEC) and Equations of state of Rutile TiO2, 2011. 

In consideration of being a rutile titanium dioxide nanoparticles as you can see the structure in the figure above, the nanoparticle one is more absorbent than larger size, and it has many synthesizing methods like Laser Ablation method. Since the band gap of rutile titanium dioxide nanoparticles is 3 eV which is lower than band gap of zinc oxide, and it has already applications in semiconductor technology as sensors. Therefore, rutile titanium dioxide nanoparticles are commonly studied in photonics, and semiconductor technology. It can be functionalized to absorb UV radiation in commercial applications. It can be additive or component of composites to insert photocatalytic activity to composites. One can also mix rutile and anatese to make band gap alignment.
A research group at Changwon National University conducted a study that they synthesized rutile titanium dioxide nanoparticles using sol-gel method followed by hydrolysis of TiClat low temperature. They also found that the size is 26.4 nm at 300 C°, and the size increase with temperature. Another research group studied photocatalytic applications of room temperature rutile titanium dioxide nanoparticles, and they concluded that it shows a remarkable photocatalytic efficiency on degradation of MB Dye, RB Dye, and PNP. They examined the degradation of materials via UV-Vis spectrophotometry. As a result, degradations of MB Dye, RB Dye, and PNP are 97%, 98%, and 80% respectively.
Rutile titanium dioxide nanoparticles offer tremendous applications in many fields. There are researchers conducting experiments to develop new and cost effective synthesis methods, and many more applications will be found. 

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...