Skip to main content

Nanocrystalline Cellulose and Its Applications

Nanocellulose is a term referring to nano-structured cellulose. This may be either cellulose nanocrystal (CNC or NCC), cellulose nanofibers (CNF) also called microfibrillated cellulose (MFC), or bacterial nanocellulose, which refers to nano-structured cellulose produced by bacteria.
Crystalline Nanocellulose (Nanocrystalline Cellulose) has interesting mechanical properties for use in material applications. Its tensile strength is about 500MPa similar to that of aluminum. Nanocrystalline cellulose's stiffness is about 140–220 GPa, comparable with that of Kevlar and better than that of glass fiber, both of which are used commercially to reinforce plastics. Films made from nanocellulose have high strength, high stiffness and high strain. Nanocrystalline cellulose's strength/weight ratio is 8 times that of stainless steel. Fibers made from nanocellulose have high strength up to 1.57 GPa and stiffness up to 86 GPa.
Crystalline Nanocellulose  as nanofiller has been a focus of attention as it exhibits attractive advantages such as low cost, low density, better uniformity and durability, and biodegradability. The high strength and stiffness as well as the small dimensions of nanocrystalline cellulose may well impart useful properties to composite materials reinforced with these fibers, which could subsequently be used in wide range of applications. The versatility and adaptability of bionanocomposites enable these nanocrystalline cellulose-based materials to be utilized for biomedical applications. Given that one of the characteristics of medical biomaterials is biocompatibility, or the ability to function properly in the human body to produce the desired clinical outcome without causing adverse effect, nanocrystalline cellulose as a bioderived material can be a promising biomaterial.
Now let's look at usage of nanocrystalline cellulose-based composites in biomedical applications. Crystalline Nanocellulose (Nanocrystalline Cellulose) is called the eye of biomaterial, and is highly applicable to the biomedical industry, including in drug release systems, scaffolds for tissue engineering, skin replacements for burns and wounds, stent coverings and bone reconstruction nerves, gum and duramater reconstruction, and blood vessel growth. Several attractive characteristics of nanocrystalline cellulose have made it favorable for this application, such as low production cost as compared to biopolymers, abundance, obtained from sustainable source, nontoxicity, biocompatibility, and excellent mechanical properties. Furthermore, since it is present in nanoscale, nanocrystalline cellulose possesses high surface area, which presents broad possibilities for chemical modifications.

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...