Skip to main content

Hydroxyapatite Nanopowders and Their Applications

Hydroxyapatite, is a naturally occurring mineral form of calcium apatite with the formula Ca5(PO4)3(OH). Pure hydroxyapatite powder is white. Naturally occurring apatites can, however, also have brown, yellow, or green colorations, comparable to the discolorations of dental fluorosis.
Hydroxyapatite Nanopowder/Nanoparticles (50 nm, 99.95+%) has been widely used as a biocompatible ceramic in many areas of medicine, but mainly for contact with bone tissue, due to its resemblance to mineral bone. In mammals, the skeleton presents a carbonated and partially substituted apatite, based on nanocrystal aggregates, and associated with collagen, building up 3-D structures present in various bone tissue conformations like trabecular or cancellous bone. There has been growing interest in developing bioactive synthetic ceramics that could closely mimic natural apatite characteristics.
As mentioned before, Hydroxyapatite Nanopowder is the main inorganic constituent of bone and teeth and therefore has been extensively studied as an artificial bone substitute. Moreover, composites prepared from synthetic hydroxyapatite and collagen have a great potential to mimic and replace skeletal bones. Biomedical applications of calcium phosphate based scaffolds take for example advantage of their ability to induce bone formation and vascularization and to cover varied uses such as bone augmentations, artificial bone grafts, maxillofacial reconstruction, spinal fusion, periodontal disease repairs and bone fillers after tumor surgery.
In fact, reconstructive tissue engineering is nowadays a highly active research area that involves the development of materials with outstanding properties. These can only be achieved by means of combining different components, processes and technologies. Scaffolds constituted by biodegradable polymers and Hydroxyapatite Nano Powder have a great potential due to the excellent combination of properties like enhancement of biocompatibility and reinforcing effect provided by the inorganic component and the facility of preparation. Researchers are nowadays extensively involved in the study of bionanocomposites based on hydroxyapatite nanoparticles due to both their recognized applications in the biomedical field and their high potential for new specific uses. 

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...