Skip to main content

Molybdenum Disilicide Sputtering Targets and Applications

Molybdenum Disilicide (MoSi2) Sputtering Targets (Size:2'' ,Thickness:0.250'' , Purity: 99.95%) which has the chemical formula of MoSiis a refractory ceramic with primary use in heating elements. It has moderate density and is electrically conductive. At high temperatures it forms a passivation layer of silicon dioxide, protecting it from further oxidation. It is insoluble in most acids but soluble in nitric acid and hydrofluoric acid.

Molybdenum Disilicide (MoSi2) Sputtering Targets is a promising candidate material for high temperature structural applications. It is a high melting point (2030 °C) material with excellent oxidation resistance. However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electronmigration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi2-based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing.
Molybdenum Disilicide (MoSi2) Sputtering Targets has emerged as one of the leading intermetallics for use at elevated temperatures. With the objective of developing an oxidation resistant coating system for high temperature applications (up to 1600°C), molybdenum disilicide is one of the compounds which has been studied on.
Molybdenum disilicide also can be used as a heating element in laboratory and industry. Also molybdenum disilicide sputtering targets can be used for protective coating on tantalum and niobium alloys.

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...