Skip to main content

Molybdenum Sputtering Targets and Applications

Molybdenum is a chemical element with symbol Mo and atomic number 42. Molybdenum minerals have been known throughout history, but the element was discovered in 1778 by Carl Wilhelm Scheele. The metal was first isolated in 1781 by Peter Jacob Hjelm.
As all we know the sputtering technique is a film-forming technique with which a plasma is utilized to generate ions striking a sputtering target so as to result in atoms of the sputtering target depositing on a substrate as a film. The sputtering technique is particularly used to produce a metallic layer in various manufacturing processes used in the semiconductor and the photoelectric industries. The properties of films formed during sputtering is related to the properties of the sputtering target itself, such as the size of the respective crystal grain and the formation of secondary phase with distribution characteristics.
Of course you may obtain thin films by using Molybdenum (Mo) Sputtering Targets (Size:6'' ,Thickness:0.125'' , Purity: 99.95%). The thin films which can be obtained by Molybdenum (Mo) Sputtering Targets can be used in many different areas. Let us give some examples pf the applications that molybdenum sputtering targets can be used. Molybdenum (Mo) Sputtering Targets can be utilized in electronic components such as semiconductor devices, thin film transistors, TFT-LCD devices, black matrix devices that enhance image contrast in Flat Panel Displays. For solar cells you may use molybdenum sputtering targets. 
Molybdenum (Mo) Sputtering Target can be also used in sensors, and gate device for CMOS (complementary metal oxide semiconductor) with tunable work functions.

Comments

Popular posts from this blog

Carbon Nanotube Threads

Since its discovery, carbon nanotube (CNT) has attracted many interests in different technology fields due to its extraordinary properties. Properties such as, high strength, great electrical and thermal conductivity, light weight and flexibility made CNT one of the best materials for wide range of applications. However, from its name it can be understood that CNT is a nanoscale material which is very small to be applied for the production of daily products. Researchers all around the world are working on finding methods and techniques which could produce new materials with the extraordinary properties of CNT. Image retrieved from:  https://worldindustrialreporter.com/strong-light-flexible-carbon-nanotubes-threads-with-ultrahigh-conductivity/ One of these research is focusing on the production of high strength threads that can be used in the manufacturing of fabrics, cables and ropes. An international group of scientists were able to produce a flexible conductive thread that i

Multi Walled Carbon Nanotube Dispersions

Carbon nanotubes (CNTs)  have attracted enormous attention in recent years due to its unique physical, electronic, optical and potential applications in materials science and nanotechnology. The van der Waals interaction between tubes, however, makes CNTs aggregate in most organic solvents and aqueous solutions, which is the major limitation of their practical applications.Various approaches have been studied to alter the CNT surface to promote the dispersion of individual nanotubes and prevent their reaggregation. On the basis of this widely accepted viewpoint, numerous techniques such as covalent bonding, surfactant coating and polymer wrapping have been developed for surface modification or sidewall functionalization.These methods, however, are complicated, time-consuming and cause permanent damage to the CNT structure and properties of the surface, which produces residues of the dispersion agent for the final product. Figure: Single Walled Carbon Nanotube (SWCNT) It has re

Magnesium Oxide Nanoparticles/Nanopowder and Applications

General Information about Magnesium Oxide Magnesium oxide which has the chemical formula of MgO, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of Magnesium. It is a white powder at room temperature. Magnesium Oxide has very high melting point (2825  o C) and boiling point (3600  o C).                                                                                                                                                                                Magnesium Oxide Nanoparticles/Nanopowder and Usage Areas                                        Magnesium Oxide nanoparticles/nanopowder  can be used in many different areas. For example Magnesium Oxide nanoparticles/nanopowder are used as a fire retardant for chemical fiber and plastics trades. For making crucible, smelter, insulated conduit, electrode bar, and electrode sheet  Magnesium Oxide Nanoparticles/Nanopowder  can be used as electric insulating material. Magnesium Oxide nan