Skip to main content

Thermal, Mechanical, Swelling and Barrier Properties of Nanocellulose-Based Nanocomposites

Cellulosic nanoparticles generally known as nanocellulose, have got interest from the scientific community because of their biodegradability, strength, and other characteristics. Sustainability and green issues continue as top priorities for many businesses and individuals, stimulating the search for nonpetroleum-based structural materials like bionanocomposites that are biodegradable, high performing, and lightweight.
Cellulose Structure
So it can be said that because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Cellulose is the most abundant and renewable biopolymer in nature. It is the main constituent of plant cell walls in wood, cotton, hemp and other plant-based materials and plays an essential role in maintaining plant structural phase. Cellulose is also synthesized by marine animals such as tunicates, algae, fungi and several bacteria species. Cellulose is a carbohydrate homopolymer consisting of β-d-glucopyranose units joint together by β-1,4-glycosidic linkage. Cellulose fibrils are highly insoluble and inelastic but able to provide mechanical support to the tissues where they resides.
Crystalline cellulose has interesting mechanical properties for use in material applications. Its tensile strength is about 500MPa, similar to that of aluminium. Its stiffness is about 140–220 GPa. Films made from nanocellulose have high strength (over 200 MPa), high stiffness (around 20 GPa) and high strain(12%). Its strength/weight ratio is 8 times that of stainless steel. Fibers made from nanocellulose have high strength up to 1.57 GPa and stiffness up to 86 GPa.
Because of the positive properties given above, nanocellulose has found application in different research fields such as the biomedical, energy, environmental and water related fields.
Nanocellulose can be used in the area of paper and paperboard manufacture. Nanocelluloses are expected to enhance the fiber-fiber bond strength and, hence, have a strong reinforcement effect on paper materials.
As described above the properties of the nanocellulose makes an interesting material for reinforcing plastics. Nanocellulose improves the mechanical properties of, for example, thermosetting resins, starch-based matrixes, soy protein, rubber latex, poly(lactide). The composite applications may be for use as coatings and films, paints, foams, packaging.
Nanocellulose can be used as a low calorie replacement for today’s carbohydrate additives used as thickeners, flavour carriers and suspension stabilizers in a wide variety of food products and is useful for producing fillings, crushes, chips, wafers, soups, gravies, puddings etc. The food applications were early recognised as a highly interesting application field for nanocellulose due to the rheological behaviour of the nanocellulose gel.
Nanocellulose can be used as super water absorbent material.
Freeze-dried nanocellulose aerogels used in sanitary napkins, tampons, diapers or as wound dressing.
The use of nanocellulose as a composite coating agent in cosmetics e.g. for hair, eyelashes, eyebrows or nails.
You can get nanocellulose depending on your research needs from the link given below:

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...