Skip to main content

Lithium Cobalt Oxide Sputtering Targets and Applications

Lithium cobalt oxide is a chemical compound with formula LiCoO2. Lithium cobalt oxide is a dark blue or bluish-gray crystalline solid and is commonly used in the positive electrodes of lithium-ion batteries.
Now let's see how lithium cobalt oxide sputtering targets can be used in batteries. Batteries with very small sizes are of immense interest, as the sizes of portable microelectronic devices and sensors decrease continuously. Thin film batteries can be used as power sources for various low power electronic devices such as portable electronic devices and micro electro mechanical systems (MEMS) which require very low power and current levels and hence can be powered by thin film batteries.
The major advantage of the thin film battery is that it can be fabricated by using the same techniques available in the microelectronic industries and can be directly incorporated with the devices because thin film battery can be deposited in any two dimensional shape or size according to the device requirement. In 1980 Mizushima proposed lithium cobalt oxide as the cathode material due to its high operating voltage and cycle life. Lithium cobalt oxide thin films have been deposited by several techniques such as pulsed laser deposition, solgel and rf sputtering. To see how rf sputtering can be done by using lithium cobalt oxides, you can click the link given below:
https://core.ac.uk/download/pdf/50694180.pdf
In battery applications magnetron sputter system can used used. The required thin film lithium can be generally deposited by conventional sputtering target techniques, whereby a LiCoO2 sputtering target assembly, defined as the LiCoO2sputtering target bonded to a backing plate, can be used to deposit the required thin film lithium. With regards to sputtering targets to produce Li thin films, a D.C. (direct current) magnetron sputter system can be employed. The LixCoyO2sputtering target is generally represented by the formula LiCoO2 and forms a part of a cathode assembly that, together with an anode, is placed in an evacuated chamber filled with an inert gas, preferably argon. Magnets are disposed above the LiCoO2 sputtering target, and a switch for connecting target backing plate to a D.C. voltage source. A substrate support is positioned below LiCoO2 sputter target within the chamber. In operation, a high voltage electrical field is applied across the cathode and the anode. The inert gas is ionized by collision with electrons ejected from the cathode. Positively charged gas ions are attracted to the cathode and, upon impingement with the target surface, these ions dislodge the target material. The dislodged target material traverses the evacuated enclosure and deposits as a LiCoO2 thin film on the desired substrate, which is normally located close to the anode.
If you need lithium cobalt oxide, you can give an order from the links given on the table below.
TypeSizeThicknessPurityLink
Lithium Cobalt Oxide1'0.125''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-licoo2-sputtering-targets-size-1-thickness-0-125-purity-99-9/
Lithium Cobalt Oxide2'0.125''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-licoo2-sputtering-targets-size-2-thickness-0-125-purity-99-9/
Lithium Cobalt Oxide2'0.250''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-licoo2-sputtering-targets-size-2-thickness-0-250-purity-99-9/
Lithium Cobalt Oxide3'0.125''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-licoo2-sputtering-targets-size-3-thickness-0-125-purity-99-9/
Lithium Cobalt Oxide3'0.250''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-licoo2-sputtering-targets-size-3-thickness-0-250-purity-99-9/
Lithium Cobalt Oxide4'0.125''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-licoo2-sputtering-targets-size-4-thickness-0-125-purity-99-9/
Lithium Cobalt Oxide4'0.250''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-licoo2-sputtering-targets-size-4-thickness-0-250-purity-99-9/
Lithium Cobalt Oxide (Indium)2'0.125''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-indium-licoo2-sputtering-targets-size-2-thickness-0-125-purity-99-9/
Lithium Cobalt Oxide (Indium)3'0.125''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-indium-licoo2-sputtering-targets-size-3-thickness-0-125-purity-99-9/
Lithium Cobalt Oxide (Indium)4'0.125''99.9%https://nanografi.com/sputtering-targets/lithium-cobalt-oxide-indium-licoo2-sputtering-targets-size-4-thickness-0-125-purity-99-9/
Lithium Nickel Cobalt Oxide2'0.125''99.9%https://nanografi.com/sputtering-targets/lithium-nickel-cobalt-oxide-lini-1-x-coxo2-sputtering-targets-size-2-thickness-0-125-purity-99-9/
Lithium Nickel Cobalt Oxide2'0.250''99.9%https://nanografi.com/sputtering-targets/lithium-nickel-cobalt-oxide-lini-1-x-coxo2-sputtering-targets-size-2-thickness-0-250-purity-99-9/

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...