Skip to main content

Lutetium Element Facts

https://nanografi.com/blog/lutetium-element-facts-/

Photo retrieved from https://uwaterloo.ca/chemistry/international-year-chemistry/periodic-table-project/lutetium
- Lutetium is a chemical element with symbol Lu and atomic number 71
-Origin of name of Lutetium is Lutetia, the ancient name of Paris.
- Lutetium is the last element in the lanthanide series, and is traditionally counted among the rare earths.
- Lutetium is a silvery white metal, which resists corrosion in dry, but not in moist air.
- Lutetium is not a particularly abundant element, although it is significantly more common than silver in the earth's crust.
- Lutetium is considered to be non toxic.
- Lutetium tarnishes slowly in air and burns at 150 oC to the oxide.
- Lutetium is the densest and hardest of the lanthanides.
- When present in compounds, lutetium exists usually in the trivalent state, Lu3+ Most of its salts are colorless.
- Lutetium oxide is used to make catalysts for cracking hydrocarbons in the petrochemical industry.
- 177Lu is used in cancer therapy and because of its long half-life, 176Lu is used to date the age of meteorites.
- Lutetium oxyorthosilicate (LSO) is currently used in detectors in positron emission tomography (PET). This is a noninvasive medical scan that creates a three-dimensional image of the body’s cellular activity.
- Lutetium is not found free in nature but is found in a number of minerals, mainly monazite

Posted by

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...