Skip to main content

Carbon Sputtering Targets and Applications

Carbon is a chemical element with symbol C and atomic number 6. Carbon is the 15th most abundant element in the Earth's crust, and the fourth most abundant element in the universe by mass after hydrogen, helium, and oxygen. Carbon's ability to give reactions with the most the elements makes it a vital for life.
As we mentioned above carbon is an element that gives reactions easily and this property of carbon make it useful in too many applications. When we focus on nanaparticles of carbon, we see that we can obtain thin films with these particles and use them for various aims. Now let's look at the properties of carbon sputtering targets and how we can obtain them.
Carbon sputtering targets, which have unique characteristics from the wide tunability of their chemical bonds. There are different ways to obtain carbon films and magnetron sputtering is one of these ways. There are three possible mechanisms for the deposition of carbon films with magnetron sputtering. First, the use of argon positive ions may induce sputtering of carbon atoms onto film surfaces like knock-on collision. Second, continuous bombardment of argon ions may enhance the densification of sputtered carbon atoms on the films. Finally, the conversion of sp2to sp3bonds, driven by high local stress, would be generated by the intense bombardment of argon ions.
Porous carbon films that can be obtained by magnetron sputtering are important for various applications such as in gas separation, ultra-filtration, membrane reactors, fuel cells, and bio-sensors. To see how carbon films can be obtained by magnetron sputtering you may check the paper below:
For your carbon sputtering targets needs, you may click the links given below:

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...