Skip to main content

Rundown about Holmium Oxide

Holmium oxide (Ho2O3) is the oxide form of the rare earth metal holmium. Holmium oxide is also known as holmia and holmium sesquioxide. This holmium oxide compound occurs in nature. Mostly, holmium oxide are contained in minerals like gadolinite and monazite. Holmium oxide has light yellow-orange, pale-yellow and beige colors. Holmium oxide is not soluble in water, but soluble in acids. The cubic structure is the only structure for holmium oxide compound. Holmium oxide has a melting point at temperature of 2415oC. Holmium oxides has a few applications.
Holmium oxide is used as colorants for glasses and cubic zirconia
Holmium oxide is used as a specialty catalyst, phosphor and laser material
Holmium oxide is used in ceramics, glasses, phosphorous, and metal halides lamps
Holmium oxide is used in nuclear reactors to control the atomic chain reaction
Holmium oxide is used as calibration standard for optical spectrophotometers since holmium oxide solutions have sharp optical absorption peaks in spectral range 200-900nm
https://nanografi.com/rare-earth-materials/holmium-oxide-99-99-325-mesh/

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...