Skip to main content

Crystalline Nanocellulose Properties and Applications

Cellulose is a linear biopolymer naturally found in plant cells like wood and cotton and is the main building block of trees and plants. It is considered the most abundant polymer in nature and possesses many unique characteristics such as good biocompatibility, low cost, low density, and exceptional mechanical properties.
Nanocellulose nanocrystals organization is structured of densely ordered crystalline particles engineered by nature in a way that makes it inherently strong. The cellulose fibers can be converted into cellulose nanofibers (CNFs) or cellulose nanocrystals (CNCs) after mechanical or chemical treatments. They show outstanding characteristics when compared not only to the original cellulosic fiber but also to other materials typically used as reinforcements in composite materials e.g. “Kevlar” or steel wires.
Cellulose nanocrystals (CNCs) possess some several notable chemical, electrical and optical properties:
  • ­The size, shape and charge of cellulose nanocrystals (CNCs) behave in a unique way in solutions.
  • ­Their high chemical reactivity of the surface allows various customizations for a wide range of applications.
  • ­Heat stability of cellulose nanocrystals (CNCs) also allows high temperature applications.
As a novel sustainable nanomaterial, crystalline nanocellulose (CNC) shows an increasing interest in application areas such as coatings, emulsions, paints, pharmaceutical formulations, and other aqueous composite systems where interactions with oppositely charged surfactants are commonly employed.
Some of many other applications of Crystalline Nanocellulose:
  • ­Crystalline Nanocellulose (CNC) is used in food industry.
  • ­Crystalline Nanocellulose (CNC) is used in medical and hygiene products.
  • ­Crystalline Nanocellulose (CNC) is used in cosmetics.
  • ­Crystalline Nanocellulose (CNC) is used in optical sensors.
  • ­Crystalline Nanocellulose (CNC) is used in packaging.

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...