Skip to main content

Polyhydroxylated Fullerenes and Their Applications in Medicine

         
Recently, much attention has been paid to the bioactive properties of water-soluble fullerene derivatives since their discovery: polyhydroxylated fullerenes, with emphasis on their pro- and antioxidative properties and their potential applications have been widely studied in various fields of science. This causes particular interest in developing available and simple methods for the synthesis of water-soluble polyhydroxylated fullerene derivatives on an industrial scale as well as investigating the physicochemical and biological properties and principles of their application.
Due to their hydrophilic properties and the ability to scavenge free radicals, polyhydroxylated fullerenes may, in the future, provide a serious alternative to the currently used pharmacological methods in chemotherapy, treatment of neurodegenerative diseases, and radiobiology. Additionally, due to the hollow spherical shape, polyhydroxylated fullerenes may be used as drug carriers. Polyhydroxylated fullerenes show antimicrobial activity as well, it showed significant antimicrobial activity against Propionibacterium acnes, Staphylococcus epidermidis, Candida albicans, and Malassezia furfur, which suggests that polyhydroxylated fullerenes show antimicrobial activity via the inhibition of microbial cell growth.
Some of the most widely used drugs in chemotherapy are anthracycline antibiotics. Anthracycline therapy, in spite of its effective antitumor activity, induces systemic oxidative stress, which interferes with the effectiveness of the treatment and results in serious side effects. Polyhydroxylated fullerenes may counteract the harmful effects of anthracyclines by scavenging free radicals and thereby improve the effects of chemotherapy.
The unique electronic properties of fullerenes are attributed to the large numbers of conjugated double π- bonds. Due to the low energy of its lowest unoccupied molecular orbital (LUMO), fullerenes react with various reactive oxygen species (ROS), such as free radicals.
Unique Properties of Polyhydroxylated Fullerenes: 
Fullerenes with various numbers of hydroxyl groups have been reported previously. Fullerenes with fewer than 12 hydroxyl groups have poor water solubility. Increasing the number of hydroxyl groups of polyhydroxylated fullerenes can improve their water solubility. Polyhydroxylated fullerenescomprise with more than 40 hydroxyl groups on the fullerene cage and more than eight secondary bound water molecules. Polyhydroxylated fullerenes exhibits a high water solubility of up to 58.9 mg/mL under neutral pH conditions.
Polyhydroxylated fullerene applications:
Polyhydroxylated fullerene is used in rubber/film material modifiers.
Polyhydroxylated fullerene is used in cosmetics.
Polyhydroxylated fullerene is used in anti-HIV drugs.
Polyhydroxylated fullerene is used in anti-cancer drugs.
Polyhydroxylated fullerene is used in nuclear magnetic resonance imaging

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...