Skip to main content

Carbon NanoTubes-based Conductive Additives for Lithium Ion Batteries

  
The lithium-ion battery is widely used in the fields of portable electronics to electric cars, due to their superior energy density over other rechargeable battery technologies and promising energy storage applications. The unique one-dimensional structure formed by the graphene layer makes carbon nanotube-based conductive additives possess excellent mechanical, electrical, and electrochemical properties and becomes a hot material in the research of lithium-ion battery. CNTs-based Conductive Additives for Lithium Ion Battery are a kind of composite having high electric conductivity containing high electric conductive carbon nanotubes and carbon black. The Carbon black particles help preventing carbon nanotubes dispersion from reagglomeration, exhibit synergetic effect with CNTs in Li-ion battery and enhance the conductivity of the composite electrodes. This product can be used in both anodes and cathodes of the Li-ion batteries and improve their electrochemical properties remarkably. When using our CNTC the capacity of battery does not decline with repeated cycling. More important, the product is very easy to be dispersed in Li-ion battery electrode, and can help to prevent the electrode materials from degradation caused by the expansion and contraction of electrode materials during charging and discharging.
In addition, CNTs have the capability to be assembled into free-standing electrodes (absent of any binder or current collector) as an active lithium ion storage material or as a physical support for ultra high capacity anode materials like silicon or germanium. The measured reversible lithium ion capacities for CNT-based anodes can exceed 1000 mAh g−1 depending on experimental factors, which is a 3× improvement over conventional graphite anodes.
The CNT-based composite electrodes can be fabricated by mechanical or chemical approaches. Owing to the large aspect ratio and the high electrical conductivity, CNTs at very low loading can lead to an efficient conductive network. The excellent mechanical strength suggests the great potential in forming a structure scaffold to accommodate nano-sized electrode materials. Dispersion of Carbon Nanotubes is known to be challenging due to the presence of bulk nanotubes which are normally highly entangled with each other. By adding grain electrode conductive additives to Carbon Nanotubes, the entangled Nanotubes are well separated. Furthermore, after adding Conductive Nanotubes Composite additive, the tap density of battery electrode coatings can be increased by 10%. Other progress may be achieved using open-ended structures and enriched chiral fractions of semiconducting or metallic chiralities that are potentially able to improve capacity and electrical transport in CNT-based lithium ion batteries.

Comments

Popular posts from this blog

Carbon Nanotube Threads

Since its discovery, carbon nanotube (CNT) has attracted many interests in different technology fields due to its extraordinary properties. Properties such as, high strength, great electrical and thermal conductivity, light weight and flexibility made CNT one of the best materials for wide range of applications. However, from its name it can be understood that CNT is a nanoscale material which is very small to be applied for the production of daily products. Researchers all around the world are working on finding methods and techniques which could produce new materials with the extraordinary properties of CNT. Image retrieved from:  https://worldindustrialreporter.com/strong-light-flexible-carbon-nanotubes-threads-with-ultrahigh-conductivity/ One of these research is focusing on the production of high strength threads that can be used in the manufacturing of fabrics, cables and ropes. An international group of scientists were able to produce a flexible conductive thread that i

Multi Walled Carbon Nanotube Dispersions

Carbon nanotubes (CNTs)  have attracted enormous attention in recent years due to its unique physical, electronic, optical and potential applications in materials science and nanotechnology. The van der Waals interaction between tubes, however, makes CNTs aggregate in most organic solvents and aqueous solutions, which is the major limitation of their practical applications.Various approaches have been studied to alter the CNT surface to promote the dispersion of individual nanotubes and prevent their reaggregation. On the basis of this widely accepted viewpoint, numerous techniques such as covalent bonding, surfactant coating and polymer wrapping have been developed for surface modification or sidewall functionalization.These methods, however, are complicated, time-consuming and cause permanent damage to the CNT structure and properties of the surface, which produces residues of the dispersion agent for the final product. Figure: Single Walled Carbon Nanotube (SWCNT) It has re

Magnesium Oxide Nanoparticles/Nanopowder and Applications

General Information about Magnesium Oxide Magnesium oxide which has the chemical formula of MgO, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of Magnesium. It is a white powder at room temperature. Magnesium Oxide has very high melting point (2825  o C) and boiling point (3600  o C).                                                                                                                                                                                Magnesium Oxide Nanoparticles/Nanopowder and Usage Areas                                        Magnesium Oxide nanoparticles/nanopowder  can be used in many different areas. For example Magnesium Oxide nanoparticles/nanopowder are used as a fire retardant for chemical fiber and plastics trades. For making crucible, smelter, insulated conduit, electrode bar, and electrode sheet  Magnesium Oxide Nanoparticles/Nanopowder  can be used as electric insulating material. Magnesium Oxide nan