Skip to main content

Origin of Buckypaper and its perspective applications

     
Buckypaper is a macroscopic aggregate of carbon nanotubes (CNT) which is ultrathin, electrically conducting and 10 times lighter than steel while still being 250 times stronger. The tough material can be folded, cut with scissors, like notebook paper. Composed of tube-shaped carbon molecules 50,000 times thinner than a human hair, Buckypaper possesses unique properties enabling it to conduct electricity like brass or steel and disperse heat like metal or silicon.
In the 1980s a carbon atom arrangement called Carbon 60, or Buckminsterfullerene, was discovered that turned out to be twice as hard as diamond. The pattern of carbon atom links was found to be identical with the basic polyhedron that R. The flat-sheet hexagonal form of carbon could wrap around itself to create long hollow tubes. These nanotubes have a tensile strength 40 times greater than that of the carbon fibers currently used in aircraft. In 1985, a team of scientists at Rice University, while conducting an experiment examining how stars produce carbon serendipitously discovered a ball of 60 carbon atoms, which scientists named "Buckyballs." The naming came from the buckminsterfullerene, the 60 carbon fullerene. Buckypaper is the brainchild of professor Ben Wang, an industrial engineer at Florida State University who discovered the carbon nanotubes of Buckyballs would stick together and could be produced into a small film.
Buckypaper is created from carbon nanotubes, which can be magnetically aligned during fabrication. Carbon nanotubes are suspended in water. Then the suspension is filtered the onto a membrane support. After drying, the paper is removed from the support, leaving a free-standing paper.
Buckypaper can be implicated in military vehicles to make them lighter and stronger, to make transporting these vehicles to trouble areas faster and more efficient. Also, buckypaper in the future is predicted to be applicable as a large-scale electron-field emitter for flat-panel displays, as a thermal conductor for superefficient heat sinks and as high-current protective film for the exteriors of airplanes. Such film would allow lightning strikes to flow around a plane and dissipate without damaging it.                                                                                                                                              

Buckypaper Applications:
Buckypaper is used in airplane industry.
Buckypaper is used in military armor plating.
Buckypaper is used in biological tissues.
Buckypaper is used in LCD (computer and TV) screens.
Buckypaper is used in sensor technology.

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...