Skip to main content

What is the Silicon wafer?


* A wafer, also called a slice or substrate, is a thin slice of semiconductor material, such as a crystalline silicon, used in electronics for the fabrication of integrated circuits and in photovoltaics for conventional, wafer-based solar cells.

* The wafer serves as the substrate for microelectronic devices built in and over the wafer and undergoes many microfabrication process steps such as doping or ion implantation, etching, deposition of various materials, and photolithographic patterning

* Finally the individual microcircuits are separated (dicing) and packaged.

* Finally the individual microcircuits are separated (dicing) and packaged.

* One process for forming crystalline wafers is known as Czochralski growth invented by the Polish chemist Jan Czochralski.

* In this process, a cylindrical ingot of high purity mono crystalline semiconductor, such as silicon or germanium, called a boule, is formed by pulling a seed crystal from a 'melt'.

* Donor impurity atoms, such as boron or phosphorus in the case of silicon, can be added to the molten intrinsic material in precise amounts in order to dope the crystal, thus changing it into n-type or p-typeextrinsic semiconductor.

https://en.wikipedia.org/wiki/Wafer_(electronics)

https://nanografi.com/silicon-wafers/

https://nanografi.com/blog/what-is-the-silicon-wafer/


Comments

Popular posts from this blog

Carbon Nanotube Threads

Since its discovery, carbon nanotube (CNT) has attracted many interests in different technology fields due to its extraordinary properties. Properties such as, high strength, great electrical and thermal conductivity, light weight and flexibility made CNT one of the best materials for wide range of applications. However, from its name it can be understood that CNT is a nanoscale material which is very small to be applied for the production of daily products. Researchers all around the world are working on finding methods and techniques which could produce new materials with the extraordinary properties of CNT. Image retrieved from:  https://worldindustrialreporter.com/strong-light-flexible-carbon-nanotubes-threads-with-ultrahigh-conductivity/ One of these research is focusing on the production of high strength threads that can be used in the manufacturing of fabrics, cables and ropes. An international group of scientists were able to produce a flexible conductive thread th...

Multi Walled Carbon Nanotube Dispersions

Carbon nanotubes (CNTs)  have attracted enormous attention in recent years due to its unique physical, electronic, optical and potential applications in materials science and nanotechnology. The van der Waals interaction between tubes, however, makes CNTs aggregate in most organic solvents and aqueous solutions, which is the major limitation of their practical applications.Various approaches have been studied to alter the CNT surface to promote the dispersion of individual nanotubes and prevent their reaggregation. On the basis of this widely accepted viewpoint, numerous techniques such as covalent bonding, surfactant coating and polymer wrapping have been developed for surface modification or sidewall functionalization.These methods, however, are complicated, time-consuming and cause permanent damage to the CNT structure and properties of the surface, which produces residues of the dispersion agent for the final product. Figure: Single Walled Carbon Nanotube (SWCNT) It ha...

Magnesium Oxide Nanoparticles/Nanopowder and Applications

General Information about Magnesium Oxide Magnesium oxide which has the chemical formula of MgO, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of Magnesium. It is a white powder at room temperature. Magnesium Oxide has very high melting point (2825  o C) and boiling point (3600  o C).                                                                                                                                                                                Magnesium Oxide Nanoparticles/Nanopowder an...