Skip to main content

Carbon Nanotube is only way to turn your big dream into reality!



For the last decade, engineers and scientists have tried to use the unique properties of carbon nanotubes to create high-performance electronics devices that are faster or energetically more efficient. That means longer battery life and higher speed of electronic devices such as laptops, smartphones.

Until now, silicon and gallium arsenide used in computer chips and personal electronics. Engineers from University of Wisconsin-Madison material science achieved current that's 1.9 times higher than silicon transistors.

Michael Arnold who is head of this research team, said that "This achievement has been a dream of nanotechnology for the last 20 years,". Also he claimed that carbon nanotube transistors that are better than silicon transistors is a big milestone.

As to extrapolations from single nanotube measurements, carbon nanotube transistors should be able to perform five times faster or use five times less energy than silicon transistors. Thanks to carbon nanotube's ultra-small dimension, it is possible to rapidly change a current signal traveling across it. This process is very important for wireless communications devices.

References:

·         https://www.sciencedaily.com/releases/2016/09/160902152049.htm

Comments

Popular posts from this blog

Carbon Nanotube Threads

Since its discovery, carbon nanotube (CNT) has attracted many interests in different technology fields due to its extraordinary properties. Properties such as, high strength, great electrical and thermal conductivity, light weight and flexibility made CNT one of the best materials for wide range of applications. However, from its name it can be understood that CNT is a nanoscale material which is very small to be applied for the production of daily products. Researchers all around the world are working on finding methods and techniques which could produce new materials with the extraordinary properties of CNT. Image retrieved from:  https://worldindustrialreporter.com/strong-light-flexible-carbon-nanotubes-threads-with-ultrahigh-conductivity/ One of these research is focusing on the production of high strength threads that can be used in the manufacturing of fabrics, cables and ropes. An international group of scientists were able to produce a flexible conductive thread th...

Multi Walled Carbon Nanotube Dispersions

Carbon nanotubes (CNTs)  have attracted enormous attention in recent years due to its unique physical, electronic, optical and potential applications in materials science and nanotechnology. The van der Waals interaction between tubes, however, makes CNTs aggregate in most organic solvents and aqueous solutions, which is the major limitation of their practical applications.Various approaches have been studied to alter the CNT surface to promote the dispersion of individual nanotubes and prevent their reaggregation. On the basis of this widely accepted viewpoint, numerous techniques such as covalent bonding, surfactant coating and polymer wrapping have been developed for surface modification or sidewall functionalization.These methods, however, are complicated, time-consuming and cause permanent damage to the CNT structure and properties of the surface, which produces residues of the dispersion agent for the final product. Figure: Single Walled Carbon Nanotube (SWCNT) It ha...

Magnesium Oxide Nanoparticles/Nanopowder and Applications

General Information about Magnesium Oxide Magnesium oxide which has the chemical formula of MgO, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of Magnesium. It is a white powder at room temperature. Magnesium Oxide has very high melting point (2825  o C) and boiling point (3600  o C).                                                                                                                                                                                Magnesium Oxide Nanoparticles/Nanopowder an...