Skip to main content

Future of Solar Cells with Nanotechnology

We mentioned in our “Harvesting Solar Power with Nanomaterials” blog how the introduction of nanomaterials in solar technology improves the efficiency, and reduces the cost of solar systems. This is due to the unique properties of the nanomaterials which lead to band gap adjustments, higher absorption, and less charge recombination. Here, we discover the new features that nanotechnology can introduce to the solar cells and solar technology.
Extensive research have been done in different universities and facilities to develop solar cells and to introduce new materials in order to improve their performance and create new properties such as flexibility, transparency, and self-cleaning. Flexibility is a new and important property of solar cells that can be achieved by nanotechnology. An example of these research, is the research done in MIT to develop solar cells that are made from single molecule thick sheets of graphene and other nanomaterials such as molybdenum diselenide (MoSe2). These solar cells are predicted to give 1000 times more power for a given weigh of material than conventional solar cells.
Besides flexibility, transparent solar cells can also be made. MIT researchers study the applicability of graphene coated with zinc oxide nanowires to solar cells. The researchers believe that these nanomaterials will allow the production of low cost flexible solar cells at high enough efficiency to be competitive. These flexible and transparent solar cells can be installed on different sites of buildings including windows. Self-cleaning solar cell panels are another type of solar cells that can be developed by nanotechnology. This can be achieved by coating the solar panel with a self-cleaning nanohydrophobic material that maintain peak efficiency over longer periods of time. This reduces the cleaning costs as well as maintaining the efficiency. These new properties can revolutionize the way of harvesting solar power by enabling the installation of the solar cells in different buildings with affordable costs and accepted efficiencies.http://nanografi.com/blog/future-of-solar-cells-with-nanotechnology/

Comments

Popular posts from this blog

Molybdenum Trioxide Nanoparticles/Nanopowder and Applications

General Information about Molybdenum Trioxide                                                     Molybdenum trioxide is chemical compound with the formula MoO3. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.  Molybdenum Trioxide  is a very light blue powder. Molybdenum Trioxide Nanoparticles/Nanopowder and Their Applications                                                    Like many  nanoparticles/nanopowder , Molybdenum Trioxide nanoparticles/nanopowder are used as catalysts. These catalysis reactions include hydrogenation catalysis and cracking catalysis. Molybdenum Trioxide nanoparticles/  nanopowder are useful for...

Graphene Tyres and Graphene Brake Pads

Could Graphene Use Create A Distruptive Technology In Tyre Sector? Almost every day, we see new applications emerging from graphene. The fact is certain; graphene is a disruptive technology that holds huge potential for commercialization. Graphene has abilities to open new markets and even replace existing materials or material technologies. A brand new application of graphene came out which is producing graphene tyres and brake pads. https://www.canadacarbon.com/brake-linings-gasket... In 2016 GraphChina (Graphene Innovation Conference); Sentury and Huagao launched their first electrostatic conducting graphene tyre on September 22nd. 2-3 weeks before the conference Sentury and Huagao officially announced their cooperation on the product. During the press conference, Sentury’s engineers (which is branded with the Landsail moniker), revealed that the latest test data shows their graphene-enhanced tyre offers; 1.8 meters shorter stopping distances (6 % improvement on conv...

Characterization and potential uses of Hydroxyapatite Nanopowder/Nanoparticle

   Hydroxylapatite , also referred to as hydroxyapatite (HA), is a calcium apatite in its naturally occurring mineral form with the formula Ca5(PO4)3(OH). A fluorapatite or chlorapatite may be produced if the OH−ion is replaced by fluoride, chloride or carbonate. Hydroxylapatite crystallizes in the hexagonal crystal pattern. Pure hydroxylapatite powder is of white color. However, naturally occurring apatites can also have brown, yellow, or green hue, resembling the coloration of dental fluorosis. Hydroxyapatite Nanopowder/Nanoparticle (HApN) , nanodots or nanocrystals are spherical or faceted high surface area oxide magnetic nanostructured particles. Nanoscale Hydroxyapatite Nanopowder/Nanoparticle (HApN) are normally 20-80 nanometers (nm) with specific surface area (SSA) in the 15 - 50 m2/g range but sometimes available with an average particle size of 100 nm range with a specific surface area of approximately 5 - 10 m2/g. Hydroxyapatite Nanopowder/Nanoparticle (HApN...