Skip to main content

Carbon Nanotubes and Nanofibers in Water Purification

Image Retriewed From: http://www.farmaceuticas.com.br/wp-content/uploads/2014/09/ecaw-biocida-agua.jpg

Water purification is a main process of removing undesirable materials, chemicals, biological contaminants, suspended solids and gases from contaminated water. The main aim is to produce water fit for a specific purpose. Most water is disinfected for human consumption (drinking water), but water purification may also be designed for a variety of other purposes, including fulfilling the requirements of medical, pharmacological, chemical and industrial applications.

Substances that are removed during the process include parasites (such as Giardia or Cryptosporidium), bacteria, algae, viruses, fungi, minerals (including toxic metals such as Lead, Copper etc.), and man-made chemical pollutants. Many contaminants can be dangerous—but depending on the quality standards, others are removed to improve the water's smell, taste, and appearance.

Actually there are several methods for purification of water. Methods to remove these elements range from simple and inexpensive to elaborate and costly. Scientist have found a new way to counter the problem of polluted drinking water. Using nanoparticles they can remove traces of pesticides and industrial chemicals from water supplies before it’s poured into our glasses.

In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Today nanoparticles, nanomembrane and nanopowder used for detection and removal of chemical and biological substances include metals (e.g. Cadmium, copper, lead, mercury, nickel, zinc), nutrients (e.g. Phosphate, ammonia, nitrate and nitrite), cyanide, organics, algae (e.g. cyanobacterial toxins) viruses, bacteria, parasites and antibiotics. Basically four classes of nanoscale materials that are being evaluated as functional materials for water purification e.g. metal-containing nanoparticles, carbonaceous nanomaterials, zeolites and dendrimers. Carbon nanotubes and nanofibers are two important materals in the last decade. Nanomaterials reveal better results than other techniques used in water treatment because of their high surface area (surface/volume ratio). It is suggested that these may be used in future at large scale water purification. It is also found that the coliform bacteria treated with ultrasonic irradiation for short time period before Ag-nanoparticle treatment at low concentration, enhanced antibacterial effect. In future, combination of both may be the best option for treatment of waste water.
To sum up, it is obvious that carbon nanotube and nanofibers will be one of the most popular nanoparticles in water purification process in near future.

http://nanografi.com/blog/carbon-nanotubes-and-nanofibers-in-water-purification/

Comments

Popular posts from this blog

Multi Walled Carbon Nanotube Dispersions

Carbon nanotubes (CNTs)  have attracted enormous attention in recent years due to its unique physical, electronic, optical and potential applications in materials science and nanotechnology. The van der Waals interaction between tubes, however, makes CNTs aggregate in most organic solvents and aqueous solutions, which is the major limitation of their practical applications.Various approaches have been studied to alter the CNT surface to promote the dispersion of individual nanotubes and prevent their reaggregation. On the basis of this widely accepted viewpoint, numerous techniques such as covalent bonding, surfactant coating and polymer wrapping have been developed for surface modification or sidewall functionalization.These methods, however, are complicated, time-consuming and cause permanent damage to the CNT structure and properties of the surface, which produces residues of the dispersion agent for the final product. Figure: Single Walled Carbon Nanotube (SWCNT) It has re

Carbon Nanotube Threads

Since its discovery, carbon nanotube (CNT) has attracted many interests in different technology fields due to its extraordinary properties. Properties such as, high strength, great electrical and thermal conductivity, light weight and flexibility made CNT one of the best materials for wide range of applications. However, from its name it can be understood that CNT is a nanoscale material which is very small to be applied for the production of daily products. Researchers all around the world are working on finding methods and techniques which could produce new materials with the extraordinary properties of CNT. Image retrieved from:  https://worldindustrialreporter.com/strong-light-flexible-carbon-nanotubes-threads-with-ultrahigh-conductivity/ One of these research is focusing on the production of high strength threads that can be used in the manufacturing of fabrics, cables and ropes. An international group of scientists were able to produce a flexible conductive thread that i

Magnesium Oxide Nanoparticles/Nanopowder and Applications

General Information about Magnesium Oxide Magnesium oxide which has the chemical formula of MgO, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of Magnesium. It is a white powder at room temperature. Magnesium Oxide has very high melting point (2825  o C) and boiling point (3600  o C).                                                                                                                                                                                Magnesium Oxide Nanoparticles/Nanopowder and Usage Areas                                        Magnesium Oxide nanoparticles/nanopowder  can be used in many different areas. For example Magnesium Oxide nanoparticles/nanopowder are used as a fire retardant for chemical fiber and plastics trades. For making crucible, smelter, insulated conduit, electrode bar, and electrode sheet  Magnesium Oxide Nanoparticles/Nanopowder  can be used as electric insulating material. Magnesium Oxide nan